As technology advances, communication and control systems have become more complex and are expected to travel distances farther than ever before. This can lead to an increased chance of electrical interference related failures.
Depending on the application, cables can be adversely affected by electromagnetic interference (EMI), radio frequency interference (RFI), and electrostatic interference (ESI). These interferences, also known as “signal interference” or simply “noise,” can not be blocked by insulation alone, making proper shielding vital for most cables. However, before discussing the properties of different shielding, knowledge of the different types of interference is needed.
Once the type of noise is identified, appropriate materials and styles of the shield can be chosen.
Shielding refers to the metallic layer surrounding a cable’s conductor, created to limit signal interference between the wire and external fields. Shielding plays an essential role in maximizing the effectiveness of cable systems and is designed to minimize signal leakage and the reception of signals produced by external sources.
Shields are available in a variety of conductive materials:
Of these materials, aluminum and copper are the most common. Conductive nylon tapes, plastics, and textiles can also be used to minimize signal interference, but are less effective and less common than most other shielding materials.
Shields are also available in a number of styles that can be chosen to accommodate specific environments, desired wiring characteristics, and other shielding needs.
Foil: This shield consists of aluminum foil laminated to either a polyester or polypropylene film, giving it mechanical strength and extra insulation. Foil provides 100% cable coverage, making it an ideal electrostatic shield. Foil shields are also lightweight, less expensive, and more flexible than braid or spiral shields, but have a shorter flex life and lower mechanical strength. Many times, the foil is used to shield pairs of multi-pair data cables to limit crosstalk.
Braid: Woven copper or aluminum strands form braid shields. The braided structure keeps the shield structurally sound and flexible while maintaining a long flex life. Usually, braid shields cover 80% to 95% of a wire. Braids can not provide 100% coverage. Other disadvantages of braids include bulkiness and weight. They are also more difficult to terminate than other shields because they must be combed out. Braid shields are most commonly used to minimize low-frequency noise.
Spiral: Conductive wire wraps around and up the central cable to form this shield. Benefits of spirals include flexibility, long flex life, and up to 97% coverage. Spirals are most commonly used in audio applications. Unfortunately, they are generally ineffective above the audio frequency range.
Combination: Some cables have both foil and braid shielding, referred to as combination shielding. Combination shielding is used to provide the benefits of both types of the shield, specifically the 100% coverage of the foil shield and the physical strength and low-frequency resistance of the braid.
Shield Coverage: The percentage of wire that is physically covered by metallic shielding
Shield Effectiveness: The ability of a shield to prevent signal interference
Choosing the correct shield type, material, and amount of coverage is important to maximize the productivity of cable systems. The environment in which the cable will be used, the potential sources of interference around the cable, and the mechanical characteristics that the cable or wire must maintain are all important elements to consider when designing a shield. The appropriate shield will minimize interference and ensure productive signal communication within your cable systems.
The purpose of the shield is to ground any of the noise a cable has picked up. The cable shielding and its termination must provide a low-impedance path to the ground. A shielded cable that is not grounded allows disruptions that can raise impedance and lower the effectiveness of the cable.
| Braid | Spiral | Foil |
Percent Coverage | 65-98% | 80-95% | 100% |
Low-Frequency Effectiveness | Excellent | Good | Fair |
High-Frequency Effectiveness | Good | Fair | Excellent |
Mechanical Strength | Excellent | Good | Fair |
Flexibility | Good | Excellent | Good |
Flex-Life | Good | Excellent | Fair |